- 1. For a particle of mass m, placed in infinite square potential of width a.
 - (a) (10 points) Find the solution of the wavefunction in the momentum space for any state n
 - (b) (10 points) Compute the expectation value for P^4 both using wavefurtion in momentum space and position space, compare your results. Is it what you expected why or why not
- 2. Consider a particle of mass m and charge q in one dimensional harmonic oscillator, we can define the following operator:

$$U(\lambda) = e^{\lambda(a-a^{\dagger})} = e^{-\lambda a} e^{-\lambda a^{\dagger}} e^{\lambda^{2}/2}$$
$$\tilde{H} = U(\lambda)HU^{\dagger}(\lambda)$$
$$\tilde{a} = U(\lambda)aU^{\dagger}(\lambda)$$
$$\tilde{a^{\dagger}} = U(\lambda)a^{\dagger}U^{\dagger}(\lambda)$$

- (a) (6 points) Show that $\tilde{a} = a \lambda$
- (b) (6 points) Show that $\tilde{a^{\dagger}} = a^{\dagger} \lambda$
- (c) (9 points) Write \tilde{H} in terms of a, a^{\dagger} and λ
- (d) (9 points) If the harmonic oscillator is subjected to an external E uniform electric field, Show that $\lambda = \frac{qE}{\omega} \sqrt{\frac{1}{2m\hbar\omega}}$
- 3. In Ch2 we learned about the raising and lowering operators for Harmonic oscillator. This approach can be generalized for any potential by making the following definition:

$$\hat{A} = i\frac{\hat{P}}{2m} + \hat{W}(x)$$
$$\hat{A}^{\dagger} = -i\frac{\hat{P}}{2m} + \hat{W}(x)$$
$$\hat{H}_1 = \hat{A}\hat{A}^{\dagger} = \frac{P^2}{2m} + V_1(x)$$
$$\hat{H}_2 = \hat{A}^{\dagger}\hat{A} = \frac{P^2}{2m} + V_2(x)$$

Now the trick is as follows:

- Let $\psi_n^{(1)}$ is a solution to \hat{H}_1 with eigenvalue $E_n^{(1)}$, then $\hat{A}\psi_n^{(1)}$ is a solution to \hat{H}_2 with the same energy.
- Let $\psi_n^{(2)}$ is a solution to \hat{H}_2 with eigenvalue $E_n^{(2)}$, then $\hat{A}^{\dagger}\psi_n^{(2)}$ is a solution to \hat{H}_1 with the same energy.
- (a) (10 points) Apply this method to the case of Harmonic oscillator taught in the class, define $\hat{W}(x)$, $V_1(x)$ and $V_2(x)$
- (b) (25 points) Apply it to the one dimensional Hydrogen atom:

$$\hat{H} = -\frac{d^2}{dx^2} + \frac{L(L+1)}{x^2} - \frac{1}{x}$$

4. (20 points) Consider the following potential

$$V(x) = \begin{cases} 0 & \text{if } \mathbf{x} < 0\\ V_1 & \text{if } \mathbf{a} > \mathbf{x} > 0\\ V_2 & \text{if } \mathbf{a} < \mathbf{x} \end{cases}$$

where $0 < V_1 < V_2$, and a particle of total energy $E > V_2$ approaching x=0 in the direction of increasing x. show that the probability of continuing into the region x>a is a unity if a equals an integral or half-integral number of deBroglie wavelengths in the region 0 < x < a.

- 5. (15 points) Prove that there is no degeneracy in 1-D quantum mechanics
- 6. A Hamiltonian H has two orthonormal eigenstates $|1\rangle$ and $|2\rangle$ such that:

$$\hat{H}|1>=E_1|1>$$
 $\hat{H}|2>=E_2|2>$ $E_1\neq E_2$

Two states |A > and |B > are defined as follows:

$$<1|A>=rac{1}{\sqrt{2}}$$
 $<2|A>=rac{i}{\sqrt{2}}$
 $<1|B>=rac{1}{\sqrt{2}}$ $<2|B>=rac{-i}{\sqrt{2}}$

- (a) (6 points) Calculate $\langle A|B \rangle$ and $\langle B|A \rangle$
- (b) (6 points) If the system initially in the state $|\psi(t=0)\rangle = |A\rangle$, what is the time dependent state $|\psi(t)\rangle$?
- (c) (8 points) What is the probability of finding the particle at state $|A\rangle$ at any time t?

Question:	1	2	3	4	5	6	Total
Points:	20	30	35	20	15	20	140
Score:							

Good Luck