Midterm Exam, Nov. $30^{\text {th }} 2020$

1. For a particle of mass m , placed in infinite square potential of width a.
(a) (10 points) Find the solution of the wavefunction in the momentum space for any state n
(b) (10 points) Compute the expectation value for P^{4} both using wavefuvtion in momentum space and position space, compare your results. Is it what you expected why or why not
2. Consider a particle of mass m and charge q in one dimensional harmonic oscillator, we can define the following operator:

$$
\begin{array}{r}
U(\lambda)=e^{\lambda\left(a-a^{\dagger}\right)}=e^{-\lambda a} e^{-\lambda a^{\dagger}} e^{\lambda^{2} / 2} \\
\tilde{H}=U(\lambda) H U^{\dagger}(\lambda) \\
\tilde{a}=U(\lambda) a U^{\dagger}(\lambda) \\
\tilde{a^{\dagger}}=U(\lambda) a^{\dagger} U^{\dagger}(\lambda)
\end{array}
$$

(a) (6 points) Show that $\tilde{a}=a-\lambda$
(b) (6 points) Show that $\tilde{a^{\dagger}}=a^{\dagger}-\lambda$
(c) (9 points) Write \tilde{H} in terms of a, a^{\dagger} and λ
(d) (9 points) If the harmonic oscillator is subjected to an external E uniform electric field, Show that $\lambda=\frac{q E}{\omega} \sqrt{\frac{1}{2 m \hbar \omega}}$
3. In Ch2 we learned about the raising and lowering operators for Harmonic oscillator. This approach can be generalized for any potential by making the following definition:

$$
\begin{array}{r}
\hat{A}=i \frac{\hat{P}}{2 m}+\hat{W}(x) \\
\hat{A}^{\dagger}=-i \frac{\hat{P}}{2 m}+\hat{W}(x) \\
\hat{H}_{1}=\hat{A} \hat{A}^{\dagger}=\frac{P^{2}}{2 m}+V_{1}(x) \\
\hat{H}_{2}=\hat{A}^{\dagger} \hat{A}=\frac{P^{2}}{2 m}+V_{2}(x)
\end{array}
$$

Now the trick is as follows:

- Let $\psi_{n}^{(1)}$ is a solution to \hat{H}_{1} with eigenvalue $E_{n}^{(1)}$, then $\hat{A} \psi_{n}^{(1)}$ is a solution to \hat{H}_{2} with the same energy.
- Let $\psi_{n}^{(2)}$ is a solution to \hat{H}_{2} with eigenvalue $E_{n}^{(2)}$, then $\hat{A}^{\dagger} \psi_{n}^{(2)}$ is a solution to \hat{H}_{1} with the same energy.
(a) (10 points) Apply this method to the case of Harmonic oscillator taught in the class, define $\hat{W}(x), V_{1}(x)$ and $V_{2}(x)$
(b) (25 points) Apply it to the one dimensional Hydrogen atom:

$$
\hat{H}=-\frac{d^{2}}{d x^{2}}+\frac{L(L+1)}{x^{2}}-\frac{1}{x}
$$

4. (20 points) Consider the following potential

$$
V(x)= \begin{cases}0 & \text { if } \mathrm{x}<0 \\ V_{1} & \text { if } \mathrm{a}>\mathrm{x}>0 \\ V_{2} & \text { if } \mathrm{a}<\mathrm{x}\end{cases}
$$

where $0<V_{1}<V_{2}$, and a particle of total energy $\mathrm{E}>V_{2}$ approaching $\mathrm{x}=0$ in the direction of increasing x . show that the probability of continuing into the region $\mathrm{x}>\mathrm{a}$ is a unity if a equals an integral or half-integral number of deBroglie wavelengths in the region $0<x<a$.
5. (15 points) Prove that there is no degeneracy in 1-D quantum mechanics
6. A Hamiltonian H has two orthonormal eigenstates $\mid 1>$ and $\mid 2>$ such that:

$$
\hat{H}\left|1>=E_{1}\right| 1>\quad \hat{H}\left|2>=E_{2}\right| 2>\quad E_{1} \neq E_{2}
$$

Two states $\mid A>$ and $\mid B>$ are defined as follows:

$$
\begin{array}{ll}
<1 \left\lvert\, A>=\frac{1}{\sqrt{2}}\right. & <2 \left\lvert\, A>=\frac{i}{\sqrt{2}}\right. \\
<1 \left\lvert\, B>=\frac{1}{\sqrt{2}}\right. & <2 \left\lvert\, B>=\frac{-i}{\sqrt{2}}\right.
\end{array}
$$

(a) (6 points) Calculate $<A \mid B>$ and $<B \mid A>$
(b) (6 points) If the system initially in the state $|\psi(t=0)>=| A>$, what is the time dependent state $\mid \psi(t)>$?
(c) (8 points) What is the probability of finding the particle at state $\mid A>$ at any time t ?

Question:	1	2	3	4	5	6	Total
Points:	20	30	35	20	15	20	140
Score:							

Good Luck

